Pratibha Learning Academy

Pratibha Learning AcademyPratibha Learning AcademyPratibha Learning Academy

Pratibha Learning Academy

Pratibha Learning AcademyPratibha Learning AcademyPratibha Learning Academy

Python + Data Science + Machine Learning Combo

Course Duration: 20–24 Weeks (Flexible) | Mode: Offline/Online

Goal:  Students become job-ready Data Analysts, Data Scientists, or ML Engineers. 

MODULE 1 — Python Programming Foundations (Weeks 1–4)

 Python Basics

  • Introduction to Python & setup (Anaconda, VS Code, Jupyter)
  • Variables, datatypes, input/output
  • Operators & Expressions
  • Conditional statements (if/elif/else)

 Loops, Functions & Data Structures

  • Loops (for, while), break/continue
  • Functions, arguments, return values
  • Lists, Tuples, Sets, Dictionaries
  • List comprehensions

 File Handling, Modules, OOP

  • File read/write
  • Python modules & packages
  • OOP: classes, objects, methods, inheritance
  • Exception handling

 Python for Data & Automation 

  • Lambda, map, filter, reduce
  • Iterators, generators
  • Working with APIs
  • Virtual environments

MODULE 2 — Data Analysis & Visualization (Weeks 5–8)

 NumPy Foundations 

  • Arrays, indexing, slicing
  • Vectorization
  • Mathematical & statistical operations

 Pandas for Data Analysis

  • DataFrames, Series
  • Import/export CSV, Excel, SQL
  • Handling missing data
  • Merging, grouping, pivot tables

 Data Visualization 

  • Histograms, Bar, Line charts
  • Heatmaps, Pairplots
  • Interactive dashboards

 Exploratory Data Analysis (EDA) 

  • Descriptive statistics
  • Outliers, distributions
  • Correlation
  • Insights reporting

MODULE 3 — SQL + Databases (Weeks 9–10)

 SQL Basics 

  • SELECT, WHERE, ORDER BY
  • JOINs, GROUP BY, HAVING
  • Subqueries 

SQL for Analytics

  • Window functions
  • CTEs
  • Indexing, optimization
  • Integrating SQL with Python

MODULE 4 — Statistics & Mathematics for ML (Weeks 11–12)

 Statistics Essentials

  • Descriptive vs Inferential statistics
  • Probability & distributions
  • Hypothesis testing (t-test, chi-square)
  • Confidence intervals 

 Math for Machine Learning

  • Linear algebra basics
  • Vectors, matrices
  • Calculus for ML (derivatives)
  • Gradient descent intuition

MODULE 5 — Machine Learning Foundations (Weeks 13–16)

 Introduction to ML 

  • ML workflow
  • Data preprocessing
  • Train-test split
  • Feature scaling & encoding

 Supervised Learning (Regression Models) 

  • Linear Regression
  • Polynomial Regression
  • Regularization (Lasso, Ridge)

 Supervised Learning (Classification Models) 

  • Logistic Regression
  • Decision Trees
  • Random Forest
  • SVM
  • Model evaluation metrics

 Ensemble & Boosting Methods 

  • Gradient Boosting
  • XGBoost, LightGBM, CatBoost

MODULE 6 — Unsupervised Learning & Feature Engineering (Weeks 17–18)

  Unsupervised Learning 

  • K-Means clustering
  • Hierarchical clustering
  • PCA (Dimensionality reduction)

  Feature Engineering  

  • Encoding techniques
  • Feature selection
  • Handling imbalance (SMOTE)

MODULE 7 — Deep Learning Foundations (Weeks 19–20)

  Neural Networks Intro 

  • Perceptron & ANN
  • Activation functions
  • Loss functions
  • Training & backpropagation

   Deep Learning Models

  • CNN basics (optional)
  • NLP basics (tokenization, embeddings)
  • Train a small DL model

MODULE 7 — Deep Learning Foundations (Weeks 19–20)

  Neural Networks Intro 

  • Perceptron & ANN
  • Activation functions
  • Loss functions
  • Training & backpropagation

   Deep Learning Models

  • CNN basics (optional)
  • NLP basics (tokenization, embeddings)
  • Train a small DL model

MODULE 8 — Practical & Interview Preparation (Week 20-24)

  • Practical
  • Interview Preparation


Copyright © 2025 Pratibha Learning Academy - All Rights Reserved.